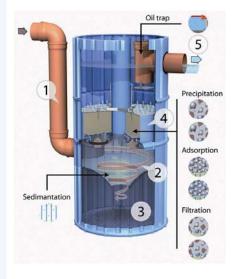
3P Technik

3P Hydrosystem 1000 Roof

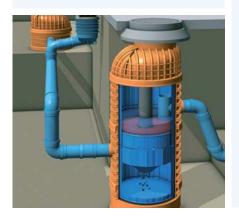
Art.-Nr. 3100100

3P Hydrosystem 1000 Roof

Specialist rainwater filter for installation within standard manhole shafts or plastic shafts, 1000mm diameter. The ready-to-install Hydrosystem 1000 is quickly and safely installed on site. Suitable for roof areas until 1000 m².


The cleaned water has such an excellent water quality that it can be discharged directly into subsurface soakaways, surface waters and the wider environment. The filter function is an up-flow process and this allows for a design with a minimal height difference between the inlet and outlet. In the filter shaft the rainwater is cleaned by basic operation of the following processes: Sedimentation, Adsorption, Filtration and Chemical Precipitation.

Incoming rainwater is led down to the basal section of the filter shaft. A hydrodynamic separator built in the base section promotes particulate sedimentation. The water is led into this separator tangentially and generates a radial flow pattern. Particles settle into the silt trap located below the separation chamber. Above the separation chamber are 4 filter elements, occupying the full shaft width such that all water must flow up through the filter. The Siltation of this filter is slow due to the upwards flow, and the fact that the filter is below the water level. The filter is easily exchanged. The filter elements have a durability between 2 and 5 years.


Function Principles:

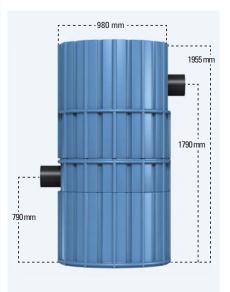
- The rainwater from the connected area is fed into the basal section of the filter housing. The angled inlet generates a radial flow pattern.
- 2. The hydrodynamic separator converts turbulent waters into a radial laminar flow pattern, generating particle sedimentation, particularly of the sand fraction.
- 3. This takes place over an inlet to the lower section of the filter shaft. The sediment is retained in a silt trap chamber below the separator. The silt trap needs to be emptied out at intervals.
- 4. In the central section of the filter housing is the actual filter, Filter Element Roof. The filter element filters out the fine materials in an up-flow process and dissolved materials are precipitated and adsorbed. The filter can be backwashed. When exhausted the filter is easily exchanged.
- 5. The filter element is easily pulled up through the shaft opening.
- 6. Above the filter element is the clean water. It passes via a blockade for light substances.

Installation Example 1:

Installed in a plastic shaft.

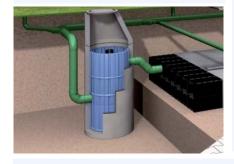
Technical Data:

Rainwater filter complying with DIN 1989-2, Type A.

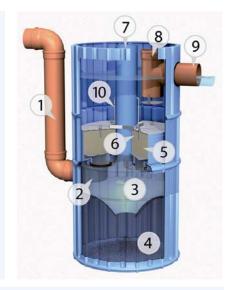

Connectable area determined from local rainfall conditions.

Connections: DN200

4 Filter Elements Material: Filter Substrate: Roof Weight per element: 16 kg


Housing Material: Polyethylene Housing: 68 kg

Total weight: 132 kg


Installation Example 2:

A schematic of the 3P Hydrosystem 1000 Roof, installed in a concrete shaft. The cleaned roof water is discharged to a subsurface soakaway.

Product Components

- 1. Rainwater Inlet (DN 200).
- 2. Angled Inlet.
- 3. Separator Chamber.
- 4. Silt Trap.
- 5. Filter Elements (4 No.).
- 6. Removal Device for Filter Element.
- 7. Overflow Pipe and Cleaning Shaft.
- 8. Blockade for light substances.
- 9. Outlet to storage or to waste.
- 10. Locking buoyancy control system

Specifications Text:

Number Quantity Description

Delivery and Installation of a 3P Hydrosystem 1000 Roof

Price in €

Delivery and installation of the following shaft specification for treatment of rainwater collected from roof areas:

Installation excavation to be prepared in accordance with relevant specifications and local regulations.

Install Shaft or manholes in accordance with manufacturer's specifications and complying with all National Regulations. For difficult ground conditions consult an expert Engineer. Ensure particular attention is paid to the shaft lid and seal all gaps expertly.

Delivery and Installation of Shaft chamber sections will need to adjust and take account of any height differences to surrounding area if and as required. Rainwater inlet DN--- connect on shaft with care and make watertight.

Rainwater outlet DN--- connect on shaft with care and make watertight.

Plant type 3P Hydrosystem 1000 Roof. Connectable area as determined from local rainfall conditions.

Module comprises ready to install PE shaft in concrete surround with hydrodynamic separator, silt trap chamber, Filter Unit to clean water from roofs. Shaft dimensions:

Upper section diameter 1000mm down to 625mm at surface, height between 300 and 600mm.

Central section at 1000mm, height 1000mm with outlet point at DN

Lower central section at 1000mm diameter and height to 500mm, with inlet port at DN ...

Basal section at 1000mm diameter, height to 550mm.

PE Shaft housing with hydrodynamic separator and removal handle for Filter Elements (4 No), diameter = 980mm, height = 2000mm.

Accessory 1:

Filter element roof Art. Nr. 1100115

Every 3P Hydrosystem 1000 Roof is supplied with 4 filter elements installed.

Parameter	Unit	Non-metal roof		Aims of LAWA 1	Drinking water ²	Seepage ³	Hydro- System ⁵
		from	to	Permissible limit	Permissible limit	Control value	Aim
Physico-chemical parameters				90-percentile			
El. cond.	[µS/cm]	25	270		2500		< 1500
pH	[-]	4,7	6,8		6,5 - 9,5	19-5	7,0 - 9,5
Nutrients							
P tot	[mg/L]	0,06	0,50	72	-		0,10
NH ₄	[mg/L]	0,1	6,2	723	0,5	1787	0,3
NO ₃	[mg/L]	0,1	4.7	122	50,0		17.5
Heavy metals					3,711,033		
Cd	[µg/L]	0,2	2,5	1,0	5,0	5,0	< 1.0
Zn	[µg/L]	24	4.880	500		500	< 500
Cu	[µg/L]	6	3.416	20	2000	50	< 50 ⁴
Pb	[µg/L]	2	493	50	10	25	< 254
Ni	[µg/L]	2	7	50	20	50	< 20
Cr	[µg/L]	2	6	50	50	50	< 20
Organic substa	inces						
PAH (EPA)	[µg/L]	0,4	0,6		0.1 (6 Subst.)	0,2	< 0,2
MOTH	[mg/L]	0,1	3,1		-	0,2	< 0.2

treatment may be necessary, not generally no critical parameter

5 the aims of the system refer to average annual loads

Observations:

Packaging Information:

1 unit per pallet.

EAN:

ent (LAWA) for Surface Water Permissible limit of the German Drinking Water Ordinance (2001)

Control value for seepage of the German Federal Soil Protection Act an Ordinance (1999) according to §8 1,2 for copper- and lead-roofs a second treatment step is necessary